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Table I. Calculated Relative Energies'2 and Zero-Point Vibrational 
Energies6 (ZPVE) (kJ mol"1) for CH4O

+- Ions and Fragments 

CH3OH+- 1 
CH2OH2

+- 2 
TS 3 
TS 4 
TS 5 
CH2OH+ + H-
CH3

+ + OH-
CH2

+- + H2O 

MP3/ 
6-31G** 

O 
-49.7 
118.2 
83.1 

167.0 
79.9 

264.8 
312.9 

ZPVE 

133.9" 
139.4 
126.7 
121.7 
120.2 
114.6 
111.1 
105.9 

MP3/ 
6-31G** 
(including 
ZPVE)C 

0 
-44.7 
111.8 
72.1 

154.7 
62.6 

244.4 
287.7 

°For HF/6-31G** optimized structures; MP3/6-31G**//HF/6-
31G** total energy for CH3OH+- is -115.009 26 hartrees. b De­
termined at the HF/4-31G//HF/6-31G** level. c Obtained by in­
cluding zero-point vibrational energies scaled to 90%: PopIe, J. A.; 
Schlegel, H. B.; Krishnan, R.; De Frees, D. J.; Binkley, J. S., Frisch, 
M. J.; Whiteside, R. A.; Hout, Jr, R. F.; Hehre, W. J. Int. J. 
Quantum Chem., in press. d From the HF/4-31G optimized struc­
ture of eclipsed 1. 

dient techniques with the split-valence plus dp polarization 6-
3IG** basis set.5 Characterization of stationary points (as 
minima or saddle points) was confirmed through calculation of 
harmonic vibrational frequencies. These were also used to evaluate 
zero-point vibrational energies. Finally, calculations incorporating 
valence-electron correlation at the third-order Moller-Plesset 
(MP3) level6 were carried out with the 6-31G** basis set to enable 
improved energy comparisons.7 The use of Hartree-Fock (as 
opposed to correlated) geometries was shown to be a very rea­
sonable approximation in the neutral methanol study of Pople et 
al.1 All calculations on odd-electron species utilized the spin-
unrestricted formalism. Calculated energies are presented in Table 
I, structures are given in Figure 1, and a schematic energy profile 
for the rearrangement and various dissociative processes in the 
CH4O+- surface is displayed in Figure 2. 

In contrast to the situation in the neutral CH4O surface where 
the structure CH2-OH2 represents a weak complex1-8 with a long 
C - O bond (1.805 A with MP2/6-31G*),1 CH2OH2

+- (2) is a 
tightly bound species with a C-O length (1.454 A, Figure 1) even 
shorter than the C-O length (1.474 A) in CH3OH+- (1). 

Again, whereas CH2-OH2 lies in a shallow potential well, high 
(354 kJ mor1)1 above CH3OH, CH2OH2

+- lies in a deep potential 
well 45 kJ mor1 lower than that of CH3OH+- (Table I). Thus 
CH2OH2

+- is the most stable CH4O+- isomer and should certainly 
be experimentally observable. Indeed, CH2OH2

+- has been de­
tected in solution by ESR spectroscopy.9 However, no gas-phase 
observation of this species has yet been reported. 

Rearrangement and dissociative processes in the CH4O
+- system 

have also been examined. The 1,2 hydrogen shift converting 
CH3OH+- (1) to CH2OH2

+- (2) via transition structure 3 is found 
to require 112 kJ mol"1. This is 40 kJ mol"1 more than is required 
for hydrogen atom loss from 1 (via 4), and such a process would 
therefore not represent a viable means of production of CH2OH2

+-. 
It is interesting to note that loss of a carbon-bound hydrogen atom 
from 1 (via 4) is accompanied by only a small reverse activation 
energy (9 kJ mol"1), whereas loss of an oxygen-bound hydrogen 
atom from 2 (via 5) has considerable reverse activation energy 
(92 kJ mol"1). Dissociations involving C-O bond cleavage (1 —*• 
methyl cation + hydroxyl radical, 2 —• methylene radical cation 

+ water) are found to be higher energy processes and to have zero 
reverse activation energy. 

Although early experimental studies found specific loss2 of a 
methyl hydrogen from CH3OH+- (to give CH2OH+), recent 
photoionization studies10,11 of the fragmentation of CH3OH+- have 
shown that at threshold energies, scrambling of the hydrogen atoms 
in CD3OH+- is observed to a minor extent (~5%). Interconversion 
of 1 and 2 via a 1,2 hydrogen shift (Figure 2) offers a suitable 
mechanism for hydrogen scrambling in CD3OH+-. It appears that 
this interconversion can occur to a small extent prior to the loss 
of H- from 1. The scrambling reported10 at higher energies for 
the dissociation of CH3OH+- to CH2

+- and H2O is not surprising 
since interconversion of CH3OH+- (1) and CH2OH2

+- (2) requires 
substantially less energy than does this dissociation process. 

Since production of 2 from initially formed 1 is not an efficient 
process, alternative pathways for its generation in the gas-phase 
need to be devised and tested. Experiments in this direction are 
well advanced.12 
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Recent ab initio molecular orbital calculations' have predicted 
the existence of a hitherto unreported and unexpected isomer of 
the methanol radical cation, CH3O+- (1). The new isomer, me­
thylenoxonium, CH2OH+- (2), was found to be lower in energy 
than the well-known 1 by 45 kJ mol"1. In this communication 
we report experimental verification of the prediction that 2 is a 
stable, observable gas-phase species. 

As the target ion 2 has no known neutral counterpart (CH2OH2 

is calculated to be very high in energy2), the mode of generation 
requires special consideration. Our strategy was to generate 2 
as the product ion in a mass spectrometric rearrangement/frag­
mentation reaction, characterized by an intramolecular hydrogen 
shift in the rearrangement stage and the expulsion of a stable, 
neutral moiety in the fragmentation. Such rearrangement/ 
fragmentation reactions appear to offer a good general approach 
for the generation of ions whose neutral counterparts are either 
unknown3a-4b or difficult to generate.5 For our present purposes, 

(5) Hariharan, P. C; Pople, J. A. Theoret. Chim. Acta 1973, 28, 213. 
(6) (a) Moller, C; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Pople, J. 

A.; Binkley, J. S.; Seeger, R. Int. J. Quant. Chem. Symp. 1976, 10, 1. 
(7) Calculations at this level are denoted MP3/6-31G**//HF/6-31G*,

1 
which means an energy calculation at the MP3 level with the 6-31G** basis 
set using a geometry optimized at the Hartree-Fock level with the 6-3IG** 
basis set. 

(8) Eades, R. A.; Gassman, P. G.; Dixon, D. A. J. Am. Chem. Soc. 1981, 
103, 1066. 

(9) Brimage, D. R. G.; Cassell, J. D. P.; Sharp, J. H.; Symons, M. C. R. 
J. Chem. Soc. A 1969, 2619. 

(1) Bouma, W. J.; Nobes, R. H.; Radom, L. / . Am. Chem. Soc, in press. 
(2) Harding, L. B.; Schlegel, H. B.; Krishnan, R.; Pople, J. A. / . Phys. 

Chem. 1980, 84, 3394. 
(3) (a) Terlouw, J. K.; Heerma, W.; Dijkstra, G. Org. Mass. Spectrom. 

1981, 16, 326. (b) Holmes, J. L., presented at the 7th Biennial Conference 
of the Australian and New Zealand Society for Mass Spectrometry, Sydney, 
August 1981. 

(4) (a) Busch, K. L.; Nixon, W. B.; Bursey, M. M. J. Am. Chem. Soc. 
1978,100, 1621. (b) Crow, F. W.; Gross, M. L.; Bursey, M. M. Org. Mass. 
Spectrom. 1981, 16, 309. 

0002-7863/82/1504-2930S01.25/0 © 1982 American Chemical Society 



J. Am. Chem. Soc. 1982, 104, 2931-2932 2931 

Table I. Collisional Activation Spectra (m/z) for CH4O
+- Isomers 

Obtained by a B/E Scana'b 

1,CH3OH
+-

CD3OH
+-

2, CH2OH2
+-

CD3OH2
+-d 

12 

10 
4 
13 
12 

13 

20 

25 

14 

27 
9 
32 
29 

15 

26 

3 
2 

16 

5e 

23 
8C 

44 

17 

8e 

2 
6C 

7 

18 

4c 
59 
10° 
4 

19 

1 
2 
2 
3 

a Recorded at 70 eV on a VG Micromass 7070 mass spectro­
meter, using helium as collision gas to give 50% reduction of the 
m/z 32 ion current. No change in the CA spectra was observed 
for 75% reduction; the spectra did not change significantly when 
recorded at lower ionizing energies (20 eV). None of the tabulat­
ed ions were present in the unimolecular metastable spectra. 
Abundances are normalized to 100 for the peak group m/z 12-19. 
Values quoted are an average of several scans. b The origin of the 
fragment ions was verified by localized V scans and by BJ/E scans: 
Lacey, M. J.; MacDonald, C. G. Org. Mass Spectrom. 1979,14, 
465; 1980,75, 134. c Oxygen-containing ions, O+-, OH+, and 
OH2

+-, were included because of their possible overlap with deuter-
ated hydrocarbon ions. a Generated from HOCD2CD2OH. 

we chose ethylene glycol as a suitable progenitor ion, which might 
be expected to yield 2 after loss of a formaldehyde molecule (eq 
D-6 

CH2 

CH2 

CH2=O + CH2OH2 . (1) 

2 

By use of a conventional double-focusing (EB geometry) mass 
spectrometer, equipped with a collision chamber, together with 
a B/E-linked scan,7a collisional activation (CA) spectra7b were 
obtained on the ions of m/z 32 (CH4O

+-) produced from methanol 
and ethylene glycol. The spectra clearly demonstrate that these 
isomeric ions have different structures. The fragment ions in the 
CHn peak group, m/z 12-15, of the unlabeled compounds were 
analyzed, and the results are summarized in Table I. In the CA 
spectrum of the ion 1 from methanol, fragment ions C+-, CH+ , 
CH2

+-, and CH3
+ were observed, while for the ion from ethylene 

glycol the CH3
+ ion (m/z 15) was virtually absent, as would be 

expected from our proposed structure (CH2OH2
+-) for this ion. 

The CA spectra of CD3OH+- and CD2OH2
+- (the latter formed 

from HOCD2CD2OH as expected from reaction 1) show that little 
or no interconversion of 1 and 2 occurs. Thus, in both cases, the 
CH+ and CH2

+- fragment ions have shifted almost exclusively 
to CD+ (m/z 14) and CD2

+- (m/z 16) (Table I) with virtually 
no CH+, CHD+-, or CHD2

+- being detected. 

It is worth noting that the CH2OH2
+- isomer is one of the 

simplest members of a new "class" of radical cations, which have 
been shown theoretically to correspond to a strong association of 
a radical cation (in this case CH2

+-) with a neutral molecule (in 
this case H2O). Other members of this class that have recently 
been experimentally identified or theoretically predicted include 
CH 2 -O=CH 2

+ - , 8 - 9 CH 2 CH 2 -O=CH 2
+ - , 1 0 C H 3 C H - O = 

CH2
+-,103 C H C H - O H 2

+ - , 9 " CH 2 CH 2 -OH 2
+ - . , 3 C H 2 -
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OHCH3
+-,11 and CH2CH2-OHCH3

+-.4 Such ions can charac­
teristically transfer the radical cation moiety to other neutral 
molecules such as nitriles,4a,9a,1° a process that bears some analogy 
to solvent exchange. 
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Ab initio molecular orbital theory calculations1 have predicted 
that the ion-dipole complexes [CH2CH2OH2]+- (1) and 
[CH2CH2NH3]+- may exist as stable species in the gas phase. In 
1981 the existence of the radical cation [CH3OHCH2CH2]+- (2) 
was inferred by Crow et al.2 from observations of the collisional 
activation3 (CA) mass spectrum of the ion [C3H8O]+-, m/z 60, 
generated from ionized 1,2-dimethoxyethane by loss of CH2O. 
Simultaneously Terlouw et al.4 concluded that 1 resulted from 
loss OfCH2O from ionized 1,3-propanediol; 1 was characterized 
by its CA mass spectrum, which differed markedly from those 
of its isomers [CH3CH2OH]+- and [CH3OCHj]+-, and by an 
intense Gaussian-type metastable peak for H2O loss, a process 
absent in the mass spectra of the latter two compounds. We report 
briefly here the identification of seven complexes, [CH2XH]+-, 
X = OH, NH2, SH, Cl, Br, the complex [CHClClH]+- and 
[CH2HOCH3]

+-. We have also measured heats of formation, Mi(, 
of some complexes. The first new complex [CH2OH2]+- (3) has 
been the subject of very recent ab initio calculations,5 and its 
existence was confirmed by a CA mass spectrum.6 We have 
generated 3 by the dissociative ionizations of HOCH2CH2OH, 
HOCH2CHO, and HOCH2COOH, by loss of CH2O, CO, and 
CO2, respectively, from their molecular ions. The CA mass 
spectrum (ZAB-2F mass spectrometer) of [CH4O]+- generated 
from HOCH2CH2OH, is shown in Figure 1 together with that 
of ionized methanol. Differences between' the CA spectra are 
striking and clearly are characteristic of the ion structures. Note 
too, the intense, narrow m/z 16 peak [CH4O]2+ in the spectrum 
of 3, showing that a significant binding energy must exist between 
[CH2]+- and [H2O]+- and that the doubly charged complex is 
inaccessible from ionized methanol. The stability of [CH2-H2J

2+ 

and its generation by charge stripping from [CH4]+- (and not 
directly from CH4 by high-energy electron or photon impact) has 
been of recent interest.7 
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